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Abstract

Background: Efforts to monitor malaria transmission increasingly use cross-sectional surveys to estimate transmission
intensity from seroprevalence data using malarial antibodies. To date, seroconversion rates estimated from cross-sectional
surveys have not been compared to rates estimated in prospective cohorts. Our objective was to compare seroconversion
rates estimated in a prospective cohort with those from a cross-sectional survey in a low-transmission population.

Methods and Findings: The analysis included two studies from Haiti: a prospective cohort of 142 children ages #11 years
followed for up to 9 years, and a concurrent cross-sectional survey of 383 individuals ages 0–90 years old. From all
individuals, we analyzed 1,154 blood spot specimens for the malaria antibody MSP-119 using a multiplex bead antigen assay.
We classified individuals as positive for malaria using a cutoff derived from the mean plus 3 standard deviations in antibody
responses from a negative control set of unexposed individuals. We estimated prospective seroconversion rates from the
longitudinal cohort based on 13 incident seroconversions among 646 person-years at risk. We also estimated
seroconversion rates from the cross-sectional survey using a reversible catalytic model fit with maximum likelihood. We
found the two approaches provided consistent results: the seroconversion rate for ages #11 years was 0.020 (0.010, 0.032)
estimated prospectively versus 0.023 (0.001, 0.052) in the cross-sectional survey.

Conclusions: The estimation of seroconversion rates using cross-sectional data is a widespread and generalizable problem
for many infectious diseases that can be measured using antibody titers. The consistency between these two estimates
lends credibility to model-based estimates of malaria seroconversion rates using cross-sectional surveys. This study also
demonstrates the utility of including malaria antibody measures in multiplex assays alongside targets for vaccine coverage
and other neglected tropical diseases, which together could comprise an integrated, large-scale serological surveillance
platform.
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Introduction

Efforts to monitor malaria transmission to inform control

strategies increasingly use cross-sectional surveys to estimate

transmission intensity from seroprevalence data based on malaria

antibodies [1–8]. The approach has gained popularity because

malaria antibody levels can be measured from dried blood spots

[9], which are relatively easy to collect in the field in cross-

sectional surveys, and this approach to estimating transmission

intensity is far more cost effective and simple compared to

alternative methods such as estimating the entomologic inocula-

tion rate. Another major advantage of the approach compared to

other low-cost methods, such as rapid diagnostic tests, is that the

longevity of antibody responses makes them potentially more

sensitive and informative measure of transmission in low-

transmission environments [2]. A potential disadvantage of using

antibody measures to estimate transmission intensity is that some

antibody responses could saturate at a low transmission intensity,

thus providing less useful information as a monitoring tool as

transmission declines [1]. Nevertheless, serological measures of

malaria infection have been proposed as a preferred diagnostic to

measure community level transmission in the pre-elimination and

elimination phases of malaria control [10].
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Investigators have estimated malaria transmission intensity from

cross-sectional prevalence surveys using seroconversion rates

estimated with a reversible catalytic model [2]. Previous validation

efforts have shown that the entomological inoculation rate – the

main measure of transmission intensity – is strongly correlated

with seroconversion rates estimated with a model fitted to cross-

sectional data [1,2]. However, to our knowledge, this model-based

approach has not been validated with incident seroconversion

rates measured prospectively in a longitudinal cohort. Given the

increasing use of cross-sectional serological surveys to monitor

malaria transmission, ensuring that model-based seroconversion

rates estimated from cross-sectional surveys are consistent with

rates estimated in prospective cohorts is an important and

necessary step to validate the approach.

The objective of this study was to estimate the malaria

seroconversion rate using antibody measures against merozoite

surface protein-119 (MSP-119) from incident seroconversions

measured in a longitudinal cohort of Haitian children ages 0–11

years old, and compare it to the rate estimated with a reversible

catalytic model fit to a cross-sectional survey of Haitians aged 0–90

years old. Since the longitudinal data provide a direct measure of

the seroconversion rate, a comparison of estimates from the two

approaches provides an important check of the model’s consis-

tency as currently applied in low-transmission settings.

Materials and Methods

Study Population and sample collection
Study populations were set up initially to monitor transmission

of lymphatic filariasis (LF) in a setting of intense LF transmission.

Both longitudinal and cross sectional studies were carried out in

the coastal plain near Léogâne, Haiti, where up to half of the

population was infected with Wuchereria bancrofti [11]. Longitudinal

samples were collected as part of a study of the role of maternal LF

infection on acquisition of LF as previously described [12,13]. A

total of 142 children were enrolled between the ages of 1 month

and 6 years on a rolling basis and followed up at 6–12 month

intervals from 1991–1999 to monitor LF parasitologically and

serologically. Children were followed for up to 9 years and each

child was measured approximately once per year. Finger prick

blood samples were collected from the study children. Additional

details of the cohort have been previously reported [13]. Cross-

sectional blood samples were collected by finger prick in 1998

from 383 individuals in the community of Miton (approximately

5 km from the communities included in the longitudinal study) as

part of an intervention trial to investigate the impact of salt

fortified with diethylcarbamazine on LF [14]. Donor ages ranged

from 2 weeks to 90 years.

Ethics Statement
The protocols for both studies were reviewed and approved by

the Centers for Disease Control and Prevention’s Institutional

Review Board and the Ethical Committee of St. Croix Hospital

(Léogâne, Haiti). After explaining the purpose of the study in

Creole, individuals were asked to provide verbal consent to

participate in the research. The human subjects review boards

approved the verbal consent process due to low literacy rates in the

study communities. In cases of longitudinal follow-up, the study

team documented consent at each study visit. Mothers provided

consent for young children, and children 7 years or older provided

assent. Consent forms included specific permission to share

specimens and to test the samples for other infectious diseases.

Malaria antibody measurement and determination of
seroconversion events

A recombinant GST/MSP-119 fusion protein cloned from P.

falciparum isolate 3D7 (kindly provided by C.W. Kauth and H.

Bujard, Heidelberg University, Germany) was coupled to

SeroMap beads (Luminex Corp., Austin, TX) in phosphate-

buffered saline (pH 7.2) as previously described [13,15]. A total of

120 mg protein was coupled to 12.56106 beads. The MSP-119

assay was included as part of a 28-plex panel for the longitudinal

survey [13] and as part of a 16-plex panel for the cross-sectional

survey. Multiplex assays were conducted using sera diluted in a

polyvinyl alcohol- and polyvinylpyrrolidone-containing buffer

(1:400) and the biotinylated monoclonal anti-IgG and IgG4

antibodies previously described [13]. Data were reported as the

average median fluorescent intensity minus background (MFI-bg)

for the duplicate wells. The magnitude of the fluorescent response

(reported in MFI – bg units) is proportional to the amount of

antigen-specific IgG antibody present in the sample.

We used adult US citizens with no history of foreign travel as an

unexposed population for antibody cutoff values to classify

individuals as seropositive. The mean +3*SD for the MSP-119

antibody response was calculated from the logged values of the

negative control antibody responses. Because samples from the

longitudinal study and the cross-sectional study were run with two

different bead lots, two different cutoff values were used: a cutoff of

365 MFI-bg units was calculated from 63 negative control sera for

the longitudinal study bead set, and a cutoff of 477 MFI-bg units

was calculated from 70 negative control samples for the cross-

sectional study bead set.

Four children ,6 months in the longitudinal cohort and one

child age 2 months in the cross-sectional study had evidence of

maternal antibodies to multiple antigens (including malaria) in the

multiplex panel; we classified them as seronegative in their first

year of life for the analysis. For children who were classified as

seropositive during follow-up we plotted their antibody responses

to identify those who were incident cases versus those who were

positive at their first visit.

Statistical methods
Estimation of seroconversion rates with longitudinal

data. We estimated age-specific seroprevalence in the longitu-

dinal cohort by combining measurements into one-year to three-

year age groups that included enough measurements to estimate

each prevalence with reasonable precision. We also estimated the

seroconversion and seroreversion rates using incident conversions

and reversions divided by the person time at risk over follow-up

[16]. Person time at risk for seroconversion was estimated by

summing the person time for periods where children were

seronegative at the beginning of the period. We estimated the

seroreversion rate in an analogous fashion, but used periods where

children began the period as seropositive. To estimate variability

of the prevalence and rate estimates, we bootstrapped the dataset

with 10,000 replications, resampling children with replacement,

and used the 2.5 and 97.5 percentiles of the bootstrapped sampling

distribution to construct 95% confidence intervals.

With short periods between measurements such as days, the

approach to estimating the rates directly is unbiased [17], but for

longer periods between measurements similar to those used in this

study (typically one year) there is some concern that this approach

could under-estimate the seroconversion rate; the rationale is that

it is possible for a child to become infected and recover between

measurements, and those cases would not be detected by the

surveillance [16]. For this reason, previous longitudinal studies

with measurements separated by weeks or months have also
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estimated malaria incidence and recovery rates using a reversible

catalytic model that attempts to account for the possibility of

multiple infections [16,18]. Since the antibody response to

malarial antigens can last for years in the presence of single- or

multiple infections [19], we would expect seroconversion rates

estimated from incident cases and from a catalytic model to

coincide; we compared the two approaches as an internal validity

check. Text S1 Statistical Details includes details of the reversible

catalytic model used in the analysis. All analyses were conducted

using R version 2.15.2 (www.R-project.org).

Estimation of seroconversion rates with cross-sectional

data. With cross-sectional data, direct information about

seroconversion and seroreversion is unknown since the same

individual is not observed at two points in time. Instead, there is

only current status information for an individual at one point in

time when they are a particular age. The reversible catalytic model

for incidence data can be fit to prevalence data with a

simplification where exposure time is measured by age in years

[1,2]. As with the longitudinal version of the model, the model

parameters estimate seroconversion and seroreversion rates. Text

S1 Statistical Details includes model details. We fit the age-specific

seroconversion model to the cross-sectional dataset using all

individuals aged 0–90 years old, and separately for individuals ages

0–11 years old for a direct comparison with the longitudinal

cohort.

Results

Population characteristics
Among the 142 children enrolled in the longitudinal study in

Leogane, each child was followed for an average of 5.1 years

(range = 0.5, 9.1). The study included 771 total antibody

measurements, and the average number of measurements per

child was 5.4 (range = 2, 9). The 383 individuals enrolled in the

cross-sectional survey in Miton ranged in age from two weeks to 90

years old. Antibody response increased with age in both samples

(Figure 1).

Seroprevalence estimates
Table 1 summarizes the seroprevalence measured in the

longitudinal cohort. Seroprevalence increased in the first years of

life, from 5% among children ,2 years old to 17% for children 6–

8 years old. Table 2 summarizes seroprevalence in the cross-

sectional study for different age categories, which showed a similar

increase in seroprevalence that plateaued by age 20 at over 50%.

The seroprevalence estimates for children #11 years old were

comparable in the two samples (11% 95% CI: [7%, 16%] in the

longitudinal study v. 14% [9%, 20%] in the cross-sectional study).

Figure 1. MSP-119 antibody optical density responses for different age categories. Panel A includes antibody responses from the
longitudinal study in Léogâne, Haiti, 1991–1999. Panel B includes antibody responses from the cross-sectional survey in Miton, Haiti, 1998.
doi:10.1371/journal.pone.0093684.g001

Table 1. Age-specific seroprevalence estimates based on the
MSP-119 antibody measured in 142 children followed
longitudinally in Léogâne, Haiti 1991–1999.

Age Category (years)
Median Age
(years) N % 95% CI

[0–2) 1.0 127 5 (1, 9)

[2–3) 2.5 98 7 (2, 14)

[3–4) 3.5 114 10 (4, 16)

[4–5) 4.6 103 15 (7, 23)

[5–6) 5.4 115 12 (6, 20)

[6–8) 6.8 125 17 (8, 26)

[8–11.9] 9.1 89 12 (3, 24)

All ages [0–11.9] 4.5 771 11 (7, 16)

N is number of measurements.
CI: Confidence Interval.
doi:10.1371/journal.pone.0093684.t001
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Seroconversion rate estimates
In the longitudinal study, 25 children were identified as

seropositive for malaria during follow-up. Of these, 13 were

incident seroconversions and 12 had seroconverted by their first

measurement (Figure 2). No children showed a pattern of multiple

infections based on their MSP-119 antibody levels. Over the 9

years of follow-up, there were 558 periods where children began

periods as seronegative corresponding to 646.185 person years;

there were 71 periods where children began periods as seropositive

corresponding to 71.844 person years. There were 13 incident

seroconversions (rate = 0.020 per year) and 11 incident serorever-

sions (rate = 0.153 per year).

Table 3 compares seroconversion and seroreversion rate

estimates from the longitudinal study with those from the cross-

sectional study. Seroconversion rates estimated among children

ages #11 years were highly comparable using the two approaches

(seroconversion rate estimated from incidence data = 0.020

[0.010, 0.032]; estimated from cross-sectional data = 0.023

[0.001, 0.052]; Table 3). The seroconversion rate estimated with

the model across all ages in the cross-sectional sample was 0.039

(0.027, 0.052), and the model provided a reasonable fit to the

seroprevalence data (Figure 3). The seroreversion rate could not be

estimated accurately with either approach due to the small

number of individuals in the studies who were seropositive.

Discussion

In this analysis of two separate studies from Haiti we found that

the seroconversion rate for the MSP-119 malaria antibody was

very similar when estimated from incident seroconversions in a

longitudinal cohort and from a model fit to cross-sectional

seroprevalence data. This finding is important because it provides

a direct validation of the use of cross-sectional malaria seroprev-

alence data to estimate seroconversion rates in low-transmission

settings. Earlier analyses demonstrated that the seroconversion

rate measured from cross-sectional surveys was strongly associated

with the entomological inoculation rate [1,2]; our finding of

concordance of seroconversion rates estimated from separate

longitudinal and cross-sectional studies in the same low-transmis-

sion region lends further credibility to this approach, and

underscores its potential utility in large-scale, cross-sectional

surveillance activities.

The estimation of seroconversion rates using cross-sectional

data is a widespread and generalizable problem for many

infectious diseases. Although the model used to estimate malaria

seroconversion rates from cross-sectional surveys is an extreme

simplification of a complex immunological process, numerous field

studies including the present study have found that the model fits

the data well [1–8]. Simple, parsimonious models such as the one

used in this analysis should be favored over more complex models

as long as the simple approach provides a reasonable approxima-

tion to the observed data [20]. A series of recent studies have

added one layer of model complexity to allow for multiple

seroconversion rates to be estimated for different age groups [3,5–

7]. A motivation for estimating separate rates in different age

groups is to allow for changes in transmission due to intervention.

In the present study, there was no well-defined intervention that

would have abruptly changed transmission, and a single serocon-

version rate over all ages provided a good fit to the seroprevalence

data (Figure 3). Nevertheless, the seroconversion rate estimated for

children ages 0–11 years was lower than the rate estimated using

data from all ages in the cross-sectional survey, suggesting

potentially reduced transmission in the younger cohort. Text S1

Statistical Details includes model results from the cross-sectional

survey that allowed for two seroconversion rates with an age

breakpoint chosen to maximize the overall likelihood [3];

consistent with the primary analysis, the more complex model

estimated a lower seroconversion rate among younger individuals

compared to older individuals, which is consistent with a secular

trend of reduced transmission in this population. Based on these

data, it would appear that transmission of malaria in Haiti is

relatively low and, at least anecdotally, it appears that transmission

has either declined in recent years or is less intense at younger

ages. Potential explanations for a secular decline are not clear as

there were no systematic control activities during the time period

when samples were collected. Importantly, we found no evidence

for antibody saturation using MSP-119, which underscores its

utility as a sensitive surveillance tool in low-transmission settings.

More recently, Bretscher et al. [21] used a different approach

based on a Bayesian Hidden Markov Model to estimate

seroconversion and reversion rates from a longitudinal cohort in

Indonesia. Rather than classify individual children as seropositive

or negative at each point in time, as we did in the present analysis,

the approach assigns a probability to each measurement of the

likelihood that the individual is infected. The rationale that

Bretscher et al. used to justify using a more complex Hidden

Markov Model is twofold: (i) individual seroconversion events are

lost when converting continuous antibody measurements to

prevalence in different age groups, and (ii) that antibody levels

are inherently noisy and imposing a fixed cutoff may lead to false

conversion and reversion events.

Our results suggest that the simpler calculation of seroconver-

sion rates directly from incident seroconversions is a viable

alternative to a more complex, Hidden Markov Model approach.

First, as we have demonstrated there is no need to collapse

individual information into age categories and group level

seroprevalence to estimate seroconversion rates with longitudinal

data – rates can be estimated directly from incident seroconver-

sions [16–18]. However, the issue of antibody variability around a

fixed cutoff value is a valid concern. In the present study, the

majority of seropositive antibody measures were far beyond the

threshold but there were instances where antibody levels oscillated

around the cutoff value (e.g., IDs 3132, 4607, 4703; Figure 2). We

used individual antibody profile plots (Figure 2) and scientific

judgment to rule out non-incident conversions in the rate

calculations. This was feasible for a study with 25 seropositive

Table 2. Age-specific seroprevalence estimates based on the
MSP-119 antibody in Miton, Haiti in 1998.

Age Category
(years)

Median Age
(years) N % 95% CI

[0–5) 2 51 6 (1, 16)

[5–10) 7 67 13 (6, 24)

[10–15) 12 82 34 (24, 45)

[15–20) 16 43 49 (33, 65)

[20–30) 24 51 57 (42, 71)

[30–40) 33 32 53 (35, 71)

[40–90] 50 57 54 (41, 68)

All ages [0–90] 14 383 36 (31, 41)

Ages [0–11] 7 157 14 (9, 20)

N is number of individuals.
CI: Confidence Interval.
doi:10.1371/journal.pone.0093684.t002
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children and 13 incident seroconversions and would be a

reasonable approach for similarly sized studies (e.g., Bretscher et

al. observed just 3 incident seroconversions in their study [21]). In

a study with a very large number of seroconversions then it should

be possible to develop a simple algorithmic approach that

identifies incident seroconversions for a given antibody based on

a defined period spent seronegative before the conversion. Future

studies could also consider the use of quantitative antibody

responses to measure malaria transmission. The use of quantitative

antibody responses would avoid the problem of choosing a cutoff

for classifying seropositive samples and would potentially retain

more information in the analysis. The methods required to

estimate malaria transmission intensity from quantitative antibody

responses is a potential area for future research.

Serum samples from these communities were tested by multiplex

as part of a study of risk factors for acquisition of LF; MSP-119 was

included in the multiplex, along with antigens from enteric pathogens

and vaccine-preventable diseases to better understand the public

health context in these communities and the potential interactions

between LF and other infections. The current results illustrate the

potential of this approach to capture seroincidence data for infections

beyond those that were the initial focus of the study. Less clear at this

point is the extent to which reversible catalytic models might be

successfully applied to the other infections we monitored. These

efforts are the focus on ongoing efforts in our labs. Independent of

whether or not reversible catalytic models can be applied generally as

measures of transmission intensity, multiplex serologic assays

represent a powerful tool for capturing useful public health data

with simple, dried blood spot surveys.

A limitation of the analysis was that only 25 children were classified

as seropositive in the longitudinal study, which meant that it was

impossible to estimate age-specific seroconversion rates and it was

also impossible to estimate the seroreversion rate with precision. The

wide confidence intervals and variation in point estimates for the

seroreversion rate in analyses limited to children #11 years reflect the

lack of information needed to accurately estimate that parameter

(Table 3). Although the estimate of the seroreversion rate from the

catalytic conversion model fit to cross-sectional data over all ages was

more precise, we expect imprecise estimation of seroreversion rates to

be a common problem for studies in low-transmission settings

because of the relatively low prevalence of infection – this limitation

was pointed out in an early description of the approach [2]. However,

if the main parameter of interest is the seroconversion rate, then this

study suggests that it can be estimated with reasonable precision

Figure 2. MSP-119 antibody optical density profiles for children in the Léogâne, Haiti longitudinal study, 1991–1999. Panel A includes
individuals with incident seroconversions, and panel B includes those who were seropositive at their first measurement. The dashed line marks the
cutoff value (365) used to determine seropositive antibody levels. The light grey lines plot antibody profiles for seronegative children, and the solid
black line in each plot is a loess smoother over the seronegative children antibody levels.
doi:10.1371/journal.pone.0093684.g002

Figure 3. Seroprevalence estimates from the cross-sectional survey in Miton, Haiti, 1998. Seroprevalence estimates for the age categories
in Table 2 (points) are plotted at the midpoint of the age categories, and the line in the plot is the predicted prevalence from the reversible catalytic
model.
doi:10.1371/journal.pone.0093684.g003
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despite limited information about seroreversion. Even if a study’s

main focus is mainly the seroconversion rate, estimating differences in

that rate – either by age, over time, or between groups – requires that

the study collect sufficient observations in each group to accurately

estimate separate rates.

These studies were not designed to follow malaria specifically and

we have no parasitologic data that would confirm that children

were, in fact, malaria infected. That limitation notwithstanding, not

all malaria infections may manifest as patent parasitemia, so

serological measures of infection may be a more accurate

representation of the true level of transmission in the population –

particularly in areas of low transmission [2]. It is also important to

point out that the longitudinal and cross-sectional specimens were

not collected from the same community; however, these commu-

nities are located with 5 km of each other and are similar in terms of

ethnicity, genetic heritage, house structures, local environments and

socioeconomic status. Although MSP-119 antibody responses are

considered to be sensitive and specific measures of malaria infection,

use of multiple malaria antigens would improve the sensitivity of

case detection. We estimate that use of a single antigen would

capture at least 75% of incident infections (Priest et al., unpublished

observations), so our estimates of infection prevalence should be

reasonably accurate. Inclusion of additional malaria antigens in

future studies, a straightforward approach with the multiplex, will

add to the value of these analyses.

Conclusion

Our finding of close agreement between malaria seroconversion

rates estimated in a prospective cohort study with those estimated

using a reversible catalytic model fit to cross-sectional prevalence

data lends additional credibility to the use of cross-sectional,

serological surveys to monitor malaria transmission in low-

transmission settings. These results demonstrate the utility of

including malaria antibody measures in multiplex assays alongside

targets for vaccine coverage and other neglected tropical diseases,

which together could comprise an integrated, large-scale surveil-

lance platform.

Supporting Information

Text S1 Statistical Details. This supporting information

includes details about the statistical models used in the analysis

as well as additional seroconversion rate estimates using a two rate

model.

(PDF)
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